Performance Troubleshooting
Documentation in Progress
This documentation is currently being developed based on performance testing and optimization work.
Status: 📝 Documentation in progress, performance testing ongoing
Expected completion: After Issue 002-106 (Cross-Component Integration Layer)
Coming Soon
This page will provide guidance for diagnosing and resolving performance issues, including:
- Communication Speed: Optimizing serial communication throughput
- Execution Latency: Reducing code execution overhead
- Memory Usage: Managing device and host memory efficiently
- Connection Pooling: Optimizing multiple device scenarios
- Caching Strategies: Implementing effective result caching
- Timeout Tuning: Balancing reliability and responsiveness
- Profiling Tools: Built-in performance monitoring and diagnostics
Performance Monitoring Preview
csharp
// Example of what's coming - performance monitoring integration
public class PerformanceOptimizedDevice : Device
{
[Task(Cache = true, TimeoutMs = 1000)]
public async Task<string> GetDeviceInfoAsync() =>
await ExecuteAsync<string>("import sys; sys.version");
[Task(RetryAttempts = 1, TimeoutMs = 5000)] // Fast fail for performance
public async Task<float> ReadSensorFastAsync() =>
await ExecuteAsync<float>("sensor.read_fast()");
public async Task<Dictionary<string, object>> GetPerformanceMetricsAsync()
{
return new Dictionary<string, object>
{
["ConnectionLatency"] = await MeasureConnectionLatency(),
["ExecutionSpeed"] = await MeasureExecutionSpeed(),
["ThroughputMbps"] = await MeasureThroughput(),
["CacheHitRatio"] = GetCacheHitRatio()
};
}
private async Task<TimeSpan> MeasureConnectionLatency()
{
var stopwatch = Stopwatch.StartNew();
await ExecuteAsync("pass"); // Minimal operation
stopwatch.Stop();
return stopwatch.Elapsed;
}
}
Common Performance Issues
Slow Code Execution
- Symptom: High latency for simple operations
- Causes: Inefficient Python code, device overload, serial buffer issues
- Solutions: Code optimization, batch operations, proper timeouts
Connection Timeouts
- Symptom: Frequent timeout exceptions
- Causes: Conservative timeout settings, network issues, device load
- Solutions: Timeout tuning, connection pooling, retry strategies
Memory Exhaustion
- Symptom: Device becomes unresponsive or restarts
- Causes: Large data transfers, memory leaks, insufficient cleanup
- Solutions: Data streaming, explicit cleanup, memory monitoring
Optimization Strategies
Code Execution Optimization
csharp
// Inefficient: Multiple round trips
await device.ExecuteAsync("import machine");
await device.ExecuteAsync("pin = machine.Pin(2, machine.Pin.OUT)");
await device.ExecuteAsync("pin.on()");
// Optimized: Single round trip
await device.ExecuteAsync(@"
import machine
pin = machine.Pin(2, machine.Pin.OUT)
pin.on()
");
Caching Results
csharp
[Task(Cache = true, TimeoutMs = 30000)] // Cache for 30 seconds
public async Task<string> GetSlowDeviceInfoAsync() =>
await ExecuteAsync<string>("expensive_device_info_call()");
Batch Operations
csharp
public async Task<Dictionary<string, float>> ReadAllSensorsAsync()
{
// Batch multiple sensor reads in one call
var result = await ExecuteAsync<string>(@"
import json
sensors = {
'temperature': temp_sensor.read(),
'humidity': humidity_sensor.read(),
'pressure': pressure_sensor.read()
}
json.dumps(sensors)
");
return JsonSerializer.Deserialize<Dictionary<string, float>>(result);
}
Performance Benchmarking
csharp
// Example benchmarking utilities coming soon
public static class PerformanceBenchmark
{
public static async Task RunBenchmarkAsync(Device device)
{
Console.WriteLine("=== Belay.NET Performance Benchmark ===");
// Test 1: Simple execution latency
var latency = await MeasureAverageLatency(device, "pass", iterations: 100);
Console.WriteLine($"Average execution latency: {latency.TotalMilliseconds:F2}ms");
// Test 2: Data transfer throughput
var throughput = await MeasureDataThroughput(device, dataSize: 1024);
Console.WriteLine($"Data throughput: {throughput:F2} KB/s");
// Test 3: Concurrent operations
var concurrentLatency = await MeasureConcurrentLatency(device, concurrency: 5);
Console.WriteLine($"Concurrent latency (5x): {concurrentLatency.TotalMilliseconds:F2}ms");
}
private static async Task<TimeSpan> MeasureAverageLatency(Device device, string code, int iterations)
{
var stopwatch = Stopwatch.StartNew();
for (int i = 0; i < iterations; i++)
{
await device.ExecuteAsync(code);
}
stopwatch.Stop();
return TimeSpan.FromMilliseconds(stopwatch.Elapsed.TotalMilliseconds / iterations);
}
}
Configuration Tuning
Serial Port Settings
csharp
// High-performance serial configuration
var device = Device.FromConnectionString("serial:COM3", options =>
{
options.BaudRate = 921600; // Maximum supported rate
options.ReadTimeout = 1000; // Aggressive timeout
options.WriteTimeout = 1000;
options.ReadBufferSize = 8192; // Large buffer
options.WriteBufferSize = 8192;
});
Executor Settings
csharp
// Performance-tuned attribute settings
[Task(
TimeoutMs = 2000, // Fast timeout
RetryAttempts = 1, // Single retry only
Cache = true, // Enable caching
CacheDurationMs = 10000 // 10-second cache
)]
public async Task<float> PerformanceOptimizedSensorRead() =>
await ExecuteAsync<float>("sensor.fast_read()");
Monitoring and Alerting
csharp
// Performance monitoring integration (coming soon)
public class DevicePerformanceMonitor
{
public async Task MonitorPerformanceAsync(Device device)
{
while (true)
{
var metrics = await CollectMetrics(device);
if (metrics.AverageLatency > TimeSpan.FromSeconds(5))
{
// Alert: High latency detected
OnPerformanceAlert?.Invoke("High latency detected", metrics);
}
if (metrics.ErrorRate > 0.05) // 5% error rate threshold
{
// Alert: High error rate
OnPerformanceAlert?.Invoke("High error rate detected", metrics);
}
await Task.Delay(TimeSpan.FromMinutes(1));
}
}
}
Related Documentation
- Configuration - Performance-related configuration options
- Session Management - Connection pooling and optimization
- Health Monitoring - Performance monitoring setup
- Connection Troubleshooting - Connection-related performance issues
Need performance help? Share your performance metrics and use case details in our GitHub Discussions for specific optimization guidance.